Линеаризация (моделирование) функций преобразования средства измерения

Министерство образования и науки Российской Федерации

"Южно-Уральский государственный университет"

Факультет "Приборостроительный"

Кафедра "Информационно-измерительная техника"


ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К КУРСОВОЙ РАБОТЕ

"Линеаризация (моделирование) функций преобразования средства измерения".


по дисциплине: "Теоретические основы

измерительных и информационных технологий

ПС-151.01.08.00.00. ПЗ. КР

Нормоконтроль (к. т. н., доцент) Е.В. Юрасова

Руководитель (к. т. н., доцент) Е.В. Юрасова

Автор работы студент группы ПС-151 Уманская А.К.


г.

Введение


Развитие науки и техники, повышение требований к качеству продукции и эффективности производства привели к радикальному изменению требований к измерениям. Один из основных аспектов этих требований - обеспечение возможности достаточно достоверной оценки погрешности измерений. Отсутствие данных о точности измерений или недостаточно достоверные ее оценки полностью или в значительной степени обесценивают информацию о свойствах объектов и процессов, качестве продукции, об эффективности технологических процессов, о количестве сырья, продукции и т.п., получаемую в результате измерений [2]. Некорректная оценка погрешности измерений чревата большими экономическими потерями, а иногда и техническими последствиями. Заниженная оценка погрешности измерений ведет к увеличению брака продукции, неэкономичному или неправильному учету расходования материальных ресурсов, неправильным выводам при научных исследованиях, ошибочным решениям при разработке и испытаниях образцов новой техники. Завышенная оценка погрешности измерений, следствием чего, как правило, является ошибочный вывод о необходимости применения более точных средств измерений (СИ), вызывает непроизводительные затраты на разработку, промышленный выпуск и эксплуатацию СИ. Стремление максимально приблизить оценку погрешности измерений к ее действительному значению так, чтобы она при этом оставалась в вероятностном смысле "оценкой сверху", - одна из характерных тенденций развития современной практической метрологии. Эта тенденция приобретает особенно большое практическое значение там, где требуемая точность измерений приближается к точности, которую могут обеспечивать образцовые СИ и где повышение корректности оценок точности измерений по существу является одним из резервов повышения точности измерений. Погрешность измерений обусловлена, в общем случае, рядом факторов. Она зависит от свойств применяемых СИ, способов использования СИ (методик выполнения измерений), правильности калибровки и поверки СИ, условий, в которых производятся измерения, скорости (частоты) изменения измеряемых величин, алгоритмов вычислений, погрешности, вносимой оператором [2]. Следовательно, задача оценки погрешности измерений в современных условиях, в частности, технических измерений - сложная комплексная задача.

Уманская А.К. Линеаризация (моделирование)

функций преобразования средства измерения. -

Челябинск: ЮУрГУ, ПС; 2012.18с.4ил.,

библиогр. список - 1 наим.

На основе исходных данных произведена линеаризация (моделирование) функции преобразования средства измерения и рассчитаны погрешности.

Задачи


ЗАДАЧА 1.

Чувствительность СИ и предельную нестабильность чувствительности. Чувствительность СИ:


Предельная нестабильность чувствительности [1]:


ЗАДАЧА 2.

Предельные относительные погрешности , приведенные к выходу и ко входу СИ

Найдем погрешность выходного сигнала .

По определению:


Определим значения относительной погрешности [1] при значениях входной измеряемой величины:


Найдем погрешность выходного сигнала, приведенную к выходу СИ.

По определению:


, где


Определим значения относительной погрешности при значениях входной измеряемой величины:


ЗАДАЧА 3.

Определить абсолютную, относительную и приведенную погрешности нелинейности при аппроксимации функции преобразования СИ в виде касательной в начальной точке.

Определить наибольшую погрешность нелинейности. Уравнение касательной имеет вид:


Точка, через которую проходит касательная


Угловой коэффициент касательной:


Функция линеаризации принимает вид:

Определим погрешности линеаризации [1]:

Абсолютная погрешность:


Относительная погрешность:


Приведенное значение погрешности (в точке x=xн):


График аппроксимации функции преобразования в виде касательной в начальной точке:


ЗАДАЧА 4

Определить относительную и абсолютную погрешности нелинейности при аппроксимации функции преобразования СИ в виде хорды, проходящей через начальную и конечную точки диапазона измерения. Определить наибольшую погрешность нелинейности.

Уравнение хорды имеет вид:


Точки, через которых проходит хорда:


Функция линеаризации принимает вид:


Определим погрешности линеаризации.

Абсолютная погрешность:


Относительная погрешность:


Максимальная погрешность нелинейности при :


Найдем погрешность:


График аппроксимации функции преобразования в виде хорды, проходящей через начальную и конечную точки нашего диапазона.


ЗАДАЧА 5.

Аппроксимировать функцию преобразования СИ на интервале: линейной функцией вида: , так, чтобы наибольшая погрешность линеаризации была минимальна: . Определить предельные относительную и приведенную погрешности линеаризации. функция аппроксимации.


- абсолютная погрешность линеаризации.


Погрешность принимает наименьшее значение в точке, в которой:


средство измерения погрешность нелинейность


Запишем условие оптимизации системы:


, где


погрешность в конце диапазона измерения:


погрешность в экстремальной точке:


Расскроем модули и запишем уравнение:


Откуда:

Функция аппроксимации имеет вид:

Определим погрешность в


Предельная приведенная погрешность линеаризации равна:


График аппроксимации функции преобразования линейной функцией вида с минимальной наибольшей погрешностью.


ЗАДАЧА 6.

Аппроксимировать функцию преобразования СИ на интервале: линейной функцией вида: , так, чтобы наибольшая погрешность линеаризации была минимальна: .

Определить предельные относительную и приведенную погрешности линеаризации.


функция аппроксимации.

-абсолютная погрешность линеаризации.


Погрешность принимает наименьшее значение в точке, в которой:


Условие оптимизации системы:


, где


Составим систему:


Из решения системы получим:


Функция аппроксимации имеет вид:


Определим погрешности.


Предельная приведенная погрешность линеаризации равна:


График аппроксимации функции преобразования линейной функцией вида с минимальной наибольшей погрешностью.


Заключение


Построив линейные модели функций преобразования средств измерения разными способами, мы убедились, что способ моделирования функции преобразования линейной функцией вида: , так, чтобы наибольшая погрешность линеаризации была минимальна, самый эффективный, т.к. в нем была наименьшая погрешность и постоянная чувствительность.

Библиографический список


1.Аксенова, Е.Н. Элементарные способы оценки погрешностей результатов прямых и косвенных измерений / учебное пособие для вузов. - М.: Изд-во Логос; Университетская книга, 2007.

2.Методический материал по применению ГОСТ 8.009-84 "ГСИ. Нормируемые метрологические характеристики средств измерений"-http://www.gosthelp.ru/text/Metodicheskijmaterialpopr.html



Похожие материалы:

Визенгрунд-Адорно (Wisengrund-Adorno) Теодор

Анализ А. современной массовой культуры производимой индустрией культуры с целью манипуляции массами получил большой резонанс в. У М. Вебера основной закономерностью музыкального развития в особенности в европейской музыке Нового. К логике социальных наук Вопросы философии. Диалектика Просвещения. Философские фрагменты. М. СПб. Gesammelte Schriften in Bd. Frankfurt am Main. Негативная диалектика является для А. ключом к.

Учет денежных средств в бюджетной организации

. Денежные средства как экономическая категория. Оформление результатов ревизионной и аудиторской проверки Глава Теоретические основы учета и контроля.

Разработка комплекса мероприятий по совершенствованию коммуникационной политики для ОАО "Ленгипротранс"

. Организационная структура ОАО Ленгипротранс.. Краткая характеристика отрасли.. Основные заказчики. Результаты исследования. Виды деятельности ОАО Ленгипротранс

Денежные реформы как форма проведения антиинфляционной политики

По дисциплине Финансы денежное обращение и кредит экономического факультета Гоглева М. Н. Денежная реформа Кафедра финансов и банковского дела.

Явлинский Григорий Алексеевич

Для подготовки данной работы были использованы.